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Appendix A: Map of Chicago 

Figure A.1 shows the 77 communities in Chicago that our study assesses. This figure represents 

these communities geographically as well as showing the names of each. The map was created 

by authors using data from the Chicago data portal of Tiger shape files of community 

boundaries.  

 

Figure A.2 maps the prevalence of STIs across Chicago neighborhoods for three selected years 

during our study, 2002, 2007, and 2014. Neighborhoods are color coded based on the yearly 

quartile distribution of STIs. Darker gradients of green indicate a lower prevalence of STIs, 

meaning healthier communities; in contrast, the lighter green communities have a higher 

prevalence of STIs. These maps demonstrate visible geographical clustering of STIs. While some 

small differences emerge in the central and northeastern communities of Chicago, the trends in 

STIs appear relatively stable across space and time.  
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Figure A.1 Map of Chicago Communities 
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Figure A.2 Map of STI Rates in Chicago across Time 
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Appendix B: Descriptive Statistics 

Table B.1 presents the descriptive statistics of the commuting networks over time. Overall, the 

commuting networks do not differ substantially over time regarding indegree, outdegree, or 

density. Across 2002-2014, the average total number of ties (average indegree and outdegree) 

between neighborhoods is 7.30. In this period, the average minimum number of ties a work 

community receives is 2.69 ties and the maximum is 14.31 (the measure of indegrees). 

Regarding how many ties a residential neighborhood may send to a work neighborhood (the 

measure of outdegree), these measures range from 0 up to 76. On average the measure of density 

is .10 from 2002-2014, with no year varying widely. This finding means that out of all possible 

ties that could be formed in this network on average 10% of them are present.   
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Table B.1 Descriptive Statistics for Commuting Network          
      

  

2002-

2014 
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Average Indegree/Outdegree 7.30 8.30 7.57 7.56 8.10 7.26 6.87 7.87 6.88 7.01 7.16 6.55 6.82 6.90 

Min Indegree 2.69 2 2 2 2 2 3 4 3 3 3 3 3 3 

Max Indegree 14.31 14 14 13 14 13 15 13 18 14 13 14 15 16 

Min Outdegree 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Max Outdegree 76 76 76 76 76 76 76 76 76 76 76 76 76 76 

Density 0.10 0.11 0.10 0.10 0.11 0.10 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.09 
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Appendix C: TERGM Results and Goodness-of-Fit Graphs for TERGMS 

We estimate TERGMs to better understand how communities are tied through commutes and the 

implications they have for disease spillovers. Additionally, these models allow us to better assess 

the role of selection in infection patterns. ERGMs allow for the statistical modeling of the 

patterns of relationships in a network using node-level characteristics (such as a community’s 

STI rate) and graph-level indices (such as reciprocity (if commuters commute to one 

neighborhood does that neighborhood also send commuters to theirs) or transitivity (i.e., a friend 

of my friend is also my friend) (Frank & Strauss, 1986; Robins et al., 2007). Through a 

simulation procedure, an ERGM evaluates whether network patterns are significantly different 

than what would be expected to occur by chance. Modeling both node-level characteristics and 

graph-level indices is advantageous because it allows a researcher to assess what is uniquely 

shaping a network structure. By using Markov chain Monte Carlo (MCMC) simulations, the 

ERGM estimates the true likelihood function (Hunter, 2007). The results represent the log 

likelihood that a network statistic is more or less likely to occur than by chance (Leifeld et al., 

2018; Robins et al., 2007). Positive and significant coefficients indicate that a network structure 

is more likely to occur than by random chance, while negative and significant coefficients 

indicate that a network structure is less likely to occur. Although computationally different, 

ERGMs are often compared to logistic regression because the dependent variable is binary 

(1=tie; 0=no tie) and the coefficients are estimated in log odds. We use a longitudinal extension 

of the ERGM, the TERGM to assess the network structures which predict our commuting 

network over time, rather than cross-sectionally. We account for inter-temporal dependence as 

we predict the existence of commuting ties across a thirteen-year period. Accounting for inter-

temporal dependence is important as the work communities which home communities are tied to 

through commuting remain relatively stable across time. 

 

Both network and spatial data in general are inherently interdependent which violates typical 

regression assumptions. In networks, nodes are connected to each other through a tie, which 

causes them to have correlated error terms. ERGMs overcome the limitation of interdependence 

by explicitly modeling the structural dependencies of the data. We account for endogenous 

effects in our model by accounting for network density, reciprocity, popularity spread, 

transitivity (closed triads), and the preconditions for transitivity (open triads). All these features 

are commonly found in complex directed networks (Wasserman & Faust, 1994). Network 

density indicates the number of edges in the network; reciprocity indicates the propensity for 

actors to have mutual ties with one another; popularity spread indicates the tendency for some 

communities to be more popular and central in the network than others; and open and closed 

triangles indicate the propensity for transitivity to occur in networks (Hunter, 2007; Snijders et 

al., 2006). 

 

Our TERGMs predict the presence of commuting ties in our network of 77 communities. We 

create an asymmetric, binary inter-neighborhood commuting network by calculating whether a 

commuting tie exists between two communities. LEHD’s LODES data provides the origin-

destination links for block groups, representing the number of persons from each home 

community commuting to each work community. We aggregate these data to community areas 

and normalize the numbers to the home community’s 2000 total population. From this 77 by 77 

valued matrix, we create an asymmetric, binary inter-neighborhood commuting matrix. We 
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define a commuting tie as existing between two communities if at least 0.5% of a community’s 

population commutes to a work community. If less than 0.5% of a community’s residents 

commute to a work community then we consider a commuting tie as nonexistent between them. 

We create an inter-neighborhood commuting network for each of the years in our study, i.e., 

2002 to 2014.  

 

To estimate our TERGMs we use maximum pseudolikelihood with bootstrapped (bootstrapping 

sample size=1000) confidence intervals. We use the xergm package in R (Leifeld et al., 2018). 

The TERGM results are comparable to ERGM results but present the average effect of the 

network statistics across the thirteen-year period (Leifeld et al., 2018). In addition to the 

endogenous effects discussed above, we account for two temporal network statistics: a linear 

time trend and memory. We control for the trend for networks to become denser (a linear time 

covariate) and maintain stable dyadic ties over time (memory). The TERGM model is 

represented by the following equation, 

Ρ(𝛮Κ+1, … , 𝑁Τ|𝑁1, … , 𝑁Κ , 𝜃) =  ∏
exp (𝜃⊺ℎ(𝑁𝑡 , 𝑁𝑡−1, … , 𝑁𝑡−𝐾))

𝑐(𝜃, 𝑁𝑡−𝐾, … , 𝑁𝑡−1)

𝑇

𝑡=𝐾+1

 

where we are predicting the probability of observing the networks N between times K+1 and T 

by taking the product of the probabilities of the individual networks conditional on the others, 

where N is the adjacency matrix of our commuting network in which Nij = 1 if community i 

sends a commuting tie to community j and 0 if community i does not send a commuting tie to 

community j. The vector of model coefficients is represented by 𝜃, h(N) represents the vector of 

statistics accounting for endogenous and exogenous network dependencies, and  𝑐(𝜃) =
 ∑ exp(𝜃⊺(𝑁𝑖))𝒩

𝑖=1  represents the set of all possible permutations of the network given the same 

number of nodes, 𝒩, where 𝜃⊺ represents the transpose of vector 𝜃. 

 

We chose a TERGM over other approaches like SIENA in part because the nodal unit of analysis 

in this study is a community area. SIENA is often used to model individual actors as nodal units 

of analyses and assumes frequent change from one time period to another, constraints that are 

less of an issue with TERGM (Block, Stadtfeld, & Snijders, 2016; Desmarais & Cranmer, 2012). 

The TERGM approach that we use comes with several limitations as well, such as it functions as 

a pooling approach rather than allowing a formal causal distinction between processes leading to 

the formation vs. dissolutions of ties (Leifeld, Cranmer, & Desmarais, 2018). 

 

Table C.1 presents the results of our TERGMs which estimate selection factors that contribute to 

commuting ties between neighborhoods. These models estimate effects of different 

characteristics of sending (home origin) communities and of receiving (work destination) 

communities. We estimate both receiver and sender effects for neighborhood measures of the 

STI rate, controlling for socioeconomic and demographic community-level factors like 

disadvantage, residential stability, racial and ethnic diversity, and the density of local workers. 

Model 1 includes all community-level predictors for estimation. Due to the high correlation 

between disadvantage and STI rates, we also estimate Model 2 to assess the robustness of our 

results when disadvantage is removed. We also examine whether the inclusion of STI covariates 

in Model 1 can explain in part the disadvantage coefficient in Model 3. We see few differences 

when excluding disadvantage or STI covariates. Model 1 coefficients will be discussed here in 

detail, as Models 2 and 3 yield largely similar patterns in results. 
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We find that many of the community-level variables are significant predictors of pairwise ties. A 

receiver effect refers to a covariate estimate that predicts whether a neighborhood is commuted 

to for work. A sender effect is similar but refers to the home community; this is the 

neighborhood that a commuter is residentially located in, and thus commutes from. Increasing 

residential stability in a work community decreases the odds that a commuter will travel to that 

neighborhood for work. Accordingly, increasing residential stability in a home community 

increases the likelihood that a neighborhood will send commutes out. Neighborhoods with high 

residential stability are less likely to be commuted to for work and residents are more likely to 

commute for work from these communities to other areas. The density of local workers in a 

community is both a positive significant predictor for both receiving and sending communities. 

A community with a high density of local workers both attracts other commuters and sends out 

its own commuters. Importantly, we find no significance of STI rates, socioeconomic 

disadvantage, and racial and ethnic diversity for receiver or sender communities.  

 

We also use measures of dissimilarity to determine how homophily drives patterns of commuting 

ties between neighborhoods. Neighborhoods with dissimilar rates of residential stability are less 

likely to be connected. This finding means that commuters often work in areas of similar 

residential stability as their residential neighborhood. Neighborhoods with similar residential 

stability are more likely to be tied by their residents’ commutes. We find the importance of 

dissimilarity in racial and ethnic diversity for ties in our network. Commuters are significantly 

more likely to commute to areas with different levels of racial and ethnic diversity than their 

home community. We find that STIs play a role in the shaping of commuting ties. Each increase 

in dissimilarity of STI rates decreases the odds that communities are tied through commutes by 

((e.26-1)x100)) 29.69% on average. Commuters tend to work in environments that have similar 

rates of STIs as their residential neighborhoods. Lastly, we find no significance of dissimilarity 

for socioeconomic disadvantage and the density of local workers for ties.  

 

Model 1 results indicate that network structures are significant contributors to commuting ties 

between neighborhoods. There is a significantly lower likelihood of tie formation in this 

commuting network, which is shown by a negative edge term. This result is common as real-

world ties are rarely randomly distributed and are expected to occur at lower frequency than the 

maximum possible. We also find evidence of clustering and transitivity in our commuting 

network. The network structure of geometrically weighted edgewise-shared partners is both 

significant and positive, meaning that neighborhoods are likely tied together in clusters and there 

is a propensity for transitivity in the Chicago commuting network. Regarding popularity spread, 

this term is negative indicating that communities with many receiving ties are less likely to 

receive additional commuting ties on average. Lastly, we find no significant effect for 

reciprocity. Commuters are not more likely to work in communities that send residents to work 

in their home community. To assess the importance of spatial features and temporal effects, we 

include multiple measures. Spatial proximity is a positive and significant predictor of commuting 

ties over time. This finding indicates, as expected, that commuters have higher odds of 

commuting to neighborhoods that are geographically contiguous to them. Additionally, we also 

find that whether neighborhoods are accessible to each other via shared public transit lines 

significantly and positively predicts commuting ties. Regarding temporal effects, we find that 
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whether a tie existed in the previous year between communities significantly predicts the tie 

being present in following time periods. Commuting ties once formed remain generally stable. 

 

To assess the goodness-of-fit for our TERGMs we simulate 1,000 networks generated at random 

from the specified coefficients in Table C.1. We then graph these simulations to visualize how 

close our simulated networks match the real commuting network (Figures C.1, C.2, and C.3). 

The black line shows how the values from our simulated networks align with the values in our 

real commuting network. We find that our simulated networks match closely to the real network 

regarding edgewise shared partners, geodesic distance, and degree for all three models in Table 

C.1. 
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Table C.1 Bootstrapped Temporal Exponential Random Graph Models Predicting Commuting Ties, 2002-2014 

  Model 1 Model 2 Model 3 

Network Structure     

Edges 
-3.008*                             

(-3.339, -2.640) 

-3.077*                                    

(-3.448, -2.631) 

-3.181*                              

(-3.520, -2.761) 

Reciprocity 
-.153                                

(-.500, .143) 

-.110                                    

(-.467, .172) 

-.162                                      

(-.516, .132) 

Geometrical Weighted In-Degree (Popularity Spread) 
-2.155*                              

(-2.552, -1.775) 

-2.143*                                     

(-2.559, -1.748) 

-2.087*                                   

(-2.524, -1.696) 

Geometrically Weighted Edgewise Shared Partner (Closed Triads) 
1.006*                     

(.765, 1.237) 

.998*                           

(.783, 1.209) 

.999*                        

(.769, 1.217) 

Geometrically Weighted Dyadic Shared Partner (Open Triads) 
-.079*                             

(-.095, -.063) 

-.078*                                 

(-.094, -.064) 

-.078*                           

(-.094, -.064) 

Receiver Effects (Work Community)    

Sexually Transmitted Infections Rate 
.165                             

(-.104, .434) 

.115                               

(-.117, .316) 
 

Community Disadvantage  
-.056                            

(-.428, .283) 
 .003                              

(-.255, .247) 

Residential Stability 
-.426*                          

(-.600, -.277) 

-.422*                                 

(-.599, -.278) 

-.449*                                   

(-.624, -.297) 

Racial and Ethnic Diversity 
-.137                                  

(-.274, .003) 

-.138                                    

(-.257, .001) 

-.163*                            

(-.269, -.044) 

Density of Local Workers 
.240*                        

(.178, .303) 

.252*                        

(.199, .308) 

.243*                         

(.186, .302) 

Sender Effects (Home Community)    

Sexually Transmitted Infections Rate 
.209                             

(-.020, .397) 

.072                            

(-.101, .208) 
 

Community Disadvantage  
-.196                              

(-.359, .007) 
 -.096                               

(-.233, .039) 

Residential Stability 
.341*                         

(.173, .529) 

.372*                          

(.189, .573) 

.332*                         

(.166, .516) 

Racial and Ethnic Diversity 
.038                              

(-.058, .114) 

.052                            

(-.019, .114) 

.009                                

(-.070, .082) 

Density of Local Workers 
.097*                        

(.031, .158) 

.112*                      

(.049, .170) 

.099*                      

(.038, .161) 

Dissimilarity    

Sexually Transmitted Infections Rate 
-.260*                              

(-.360, -.131) 

-.249*                             

(-.373, -.104) 
 

Community Disadvantage  
.010                             

(-.105, .126) 
 -.117                               

(-.253, .018) 

Residential Stability 
-.268*                                 

(-.401, -.151) 

-.249*                          

(-.409, -.135) 

-.262*                               

(-.416, -.147) 

Racial and Ethnic Diversity 
.088*                         

(.009, .194) 

.096*                      

(.011, .215) 

.070*                         

(.004, .164) 

Density of Local Jobs 
-.053                                  

(-.114, .013) 

-.064                              

(-.118, .004) 

-.056*                            

(-.114, -.001) 

Spatial Effects    

Spatial Proximity 
1.217*                   

(.789, 1.682) 

1.205*                     

(.775, 1.680) 

1.221*                           

(.781, 1.720) 
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Transportation 
.733*                      

(.636, .844) 

.740*                        

(.639, .854) 

.766*                          

(.658, .892) 

Time Effects    

Linear Time Trend 
.013                                  

(-.039, .054) 

.014                              

(-.040, .058) 

.017                                              

(-.034, .060) 

Memory 
2.131*                  

(1.957, 2.373) 

2.137*                

(1.960, 2.359) 

2.137*                        

(1.970, 2.365) 

N= 77 Nodes and 77,077 Possible Edges 

Notes: *Denotes that confidence interval does not overlap with zero; coefficients with 95% confidence intervals in parenthesis 
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Figure C.1 Goodness-of-Fit Statistics for TERGM Model 1  
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Figure C.2 Goodness-of-Fit Statistics for TERGM Model 2  
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Figure C.3 Goodness-of-Fit Statistics for TERGM Model 3 
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Appendix D: Supplementary Analyses for Combined Matrices 

We combine matrices to assess how multiple connections across Chicago contribute to STI rates 

in neighborhoods. Our four additional matrices include neighboring communities that are 1) 

geographically contiguous or connected through commuting ties; 2) geographically contiguous 

or connected through public transit; 3) connected through public transit or commuting ties; and 

4) geographically contiguous, or connected through commuting ties, or public transit ties. We 

incorporate these four new definitions of networks as spatial weight matrices in our fixed effects 

spatial autoregressive models. In Table D.1, we show how different combinations of the matrices 

of geographic contiguity, mass transit, and commuting shape the effects for spatial network lag 

of STI rates. Using measures of AIC and BIC to assess model fit, we find that the model which 

accounts for all three of these networks has the best model fit. Communities that have multiple 

connections are most at risk of exposure to STI spread from the communities they are connected.  
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Table D.1 Spatial Lag and Error Models Predicting STI Rates with 

Combined Matrices 

  Network STI Risk AIC BIC 

Geographic 

Contiguity Network 
.60*** (.06) -921.79 -823.62 

Public Transit 

Network 
.88*** (.01) -3391.84 -3293.66 

Commuting 

Network 
.96*** (.01) -1268.55 -1170.38 

Contiguity and 

Commuting 

Network 

3.52*** (.15) -6617.41 -6529.05 

Contiguity and 

Transit Network 
6.09*** (.42) -7594.63 -7496.45 

Transit and 

Commuting 

Network 

3.35*** (.09) -8337.62 -8244.35 

Contiguity, Transit, 

and Commuting 

Network 

3.08*** (.10) -8412.05 -8372.78 

Notes: Models are estimated including all covariates from Table 4; Coefficients with standard errors 

in parentheses 
*p<.05, **p<.01,*** p<.001 
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Appendix E: Supplementary Analyses for Relevant Demographic Variables 

STI rates are more prevalent among lower socioeconomic statuses and racial and ethnic 

minorities. These demographic patterns likely link to residential patterning of STIs. Further, a 

neighborhood’s age structure, marriage rates, and average household size are relevant for that 

neighborhood’s overall risk of contracting STIs and may influence access to public transit and 

commuting patterns.  

 

In Tables E.1 through E.3, we predict our fixed effects spatial and network autoregressive 

models using more detailed information on the racial composition of the community, and the 

neighborhood’s age structure, marriage rates, and average household size. We also consider how 

the teen birth rate, the age-adjusted total fertility rate, total population logged, and population 

density could influence neighborhood STIs. By controlling for these variables, we can examine 

the robustness of our results in determining how spatial proximity, commuting, and 

transportation ties influence STI rates. Table E.1 presents the results with our geographic 

contiguity network; Table E.2 presents the results with our public transit network, and Table E.3 

presents the results with our commuting network.  

 

Our results remain robust to these additional controls. Additionally, we find that several of them 

are integral in predicting STI rates. We consistently find that communities which experience an 

increase of Black residents also experience an increase in the prevalence of STIs. This finding is 

consistent with prior findings of a higher concentration of STIs among the Black population 

(Adimora & Schoenbach, 2005, 2013; Harling et al., 2014; Thomas & Thomas, 1999).  

 

Across all three spatial weight specifications, we find that a high teen birth rate and a high age-

adjusted total fertility rate increases a neighborhood’s STI prevalence. Additionally, we find that 

a high average household size increases STI prevalence, while a high percentage of married 

residents decreases STI prevalence. We also find the percentage of the population age most at 

risk, i.e., those aged 15 to 25, significant. Contrary to expectations, a high percentage of the 

population at risk of STI contraction decreases STI prevalence. Although the main results remain 

robust to all these additional controls, high correlations between many of the added variables and 

thus, the increased multicollinearity risk, make these models less ideal for inclusion in the main 

tables. Additionally, the models retained in the main tables presented consistently better fit 

scores: for the spatial network (Table 2 in text AIC: -915.45 and Table E.1 AIC: -891), public 

transit network (Table 2 in text AIC: -3391.84 and Table E.2 AIC: -3378), and the commuting 

network (Table 2 in text AIC: -1269.08 and Table E.3 AIC: -1176). The models in the main 

tables also control for prior STI rates, which inherently absorbs the effects of other prior STI 

determinants from the longer models. 
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Table E.1 Spatial Lag and Error Models with Geographic Contiguity Network Predicting STI Rates with Relevant Demographic Variables, 2002-

2014 

  
Model 

1 

Model 

2 

Model 

3 
Model 4 

Model 

5 

Model 

6 

Model 

7 

Model 

8 
Model 9 

Model 

10 

Model 

11 

Concentrated Disadvantage 
.014 -.070* .015 .037 -.044 .005 .026 .014 .014 -.037  

(.029) (.033) (.029) (.029) (.024) (.029) (.024) (.029) (.030) (.035)  

Residential Stability 
-.030 -.050 -.004 -.049 -.049* .002 -.038 .003 -.030 -.109* -.113** 

(.036) (.038) (.036) (.035) (.024) (.037) (.023) (.038) (.036) (.044) (.042) 

Diversity 
-.072*  -.056 -.074* -.041 -.059 -.033 -.076* -.072*   

(.036)  (.036) (.035) (.030) (.036) (.030) (.036) (.036)   

Local Worker Density 
.007 -.002 .019 .013 .017 .014 .018 .028 .007 .045 .043 

(.032) (.032) (.032) (.032) (.035) (.032) (.035) (.033) (.032) (.034) (.032) 

Percentage White  -.002        .003 .002 

 (.006)        (.006) (.006) 

Percentage Black  .015**        .015* .013* 

 (.005)        (.006) (.005) 

Percentage Hispanic  .001        .007 .007 

 (.006)        (.006) (.006) 

Teen Birth Rate   .004***       .003**  

  (.001)       (.001)  
Age-Adjusted Total 

Fertility Rate 
   .0002***      .0002*** .0002*** 

   (.00003)      (.00003) (.00003) 

Average Household Size     .134**     .128 .128 

    (.049)     (.075) (.071) 

Population Married      -.009**    -.011** -.010** 

     (.003)    (.004) (.003) 

Population Aged 15 to 25       -.007**   -.038*** -.035*** 

      (.003)   (.007) (.007) 

Total Population Logged        -.238**  .047  
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       (.092)  (.116)  

Population Density 
        3.79e-10 1.51e-07 1.32e-07 

        

(1.06e-

07) 

(1.07e-

07) 

(1.04e-

07) 
 

           

Network STI Risk 

-

.777*** 

-

.772*** 

-

.785*** -.735*** .759*** 

-

.772*** .751*** 

-

.778*** -.777*** -.740*** -.722*** 

(.085) (.083) (.084) (.087) (.042) (.085) (.044) (.084) (.085) (.083) (.085) 
 

           

Error Variance Parameter   .761*** .763*** .768*** .757*** 

-

.787*** .76*** -.77*** .764*** .761*** .759*** .750*** 

(.042) (.041) (.041) (.043) (.085) (.042) (.087) (.041) (.042) (.042) (.044) 

            

Constant 
.138*** .136*** .136*** .136*** .137*** .137*** .138*** .137*** .138*** .131*** .132*** 

(.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) 

            

N 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 

AIC -808 -834 -826 -847 -812 -814 -812 -813 -806 -894 -891 

BIC -715 -731 -728 -748 -714 -716 -714 -715 -708 -757 -769 

Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at 

p<.001. *p<0.05, **p<0.01,*** p<0.001 (two-tailed) 
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Table E.2 Spatial Lag and Error Models with Public Transit Network Predicting STI Rates with Relevant Demographic Variables, 2002-2014 

  
Model 

1 

Model 

2 

Model 

3 
Model 4 

Model 

5 

Model 

6 

Model 

7 

Model 

8 
Model 9 

Model 

10 

Model 

11 

Concentrated Disadvantage 
.008 -.114** .041 .065* -.033 -.022 .034 -.006 .004 -.020  

(.030) (.036) (.031) (.031) (.033) (.031) (.034) (.030) (.030) (.041)  

Residential Stability 
-.051 -.100* -.042 -.075* -.091* -.008 -.070 -.007 -.056 -.112* -.131** 

(.037) (.040) (.037) (.036) (.039) (.039) (.038) (.040) (.038) (.047) (.045) 

Diversity -.128**  

-

.138*** -.143*** -.123** -.104* -.119** -.124** -.122**   

(.041)  (.041) (.040) (.041) (.041) (.041) (.041) (.042)   

Local Worker Density 
.020 .033 .054 .037 .034 .026 .019 .049 .021 .112** .073 

(.042) (.041) (.042) (.041) (.042) (.041) (.042) (.043) (.042) (.043) (.040) 

Percentage White  .001        .003 .006 

 (.006)        (.007) (.006) 

Percentage Black  .020***        .012 .017*** 

 (.005)        (.006) (.005) 

Percentage Hispanic  .007        .008 .010 

 (.006)        (.006) (.006) 

Teen Birth Rate   .005***       .002*  

  (.001)       (.001)  
Age-Adjusted Total Fertility 

Rate 
   .0002***      .0003*** .0003*** 

   (.00004)      (.00004) (.00004) 

Average Household Size     .204**     .143 .099 

    (.069)     (.084) (.078) 

Population Married      

-

.014***    -.017*** -.017*** 

     (.004)    (.004) (.004) 

Population Aged 15 to 25       -.006   -.031*** -.030*** 

      (.003)   (.007) (.007) 

Total Population Logged        -.263**  -.195  
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       (.093)  (.126)  

Population Density 
        1.13e-07 2.09e-07 1.74e-07 

        

(1.33e-

07) 

(1.28e-

07) 

(1.24e-

07) 
 

           

Network STI Risk 
.883*** .883*** .883*** .883*** .883*** .883*** .883*** .883*** .883*** .883*** .883*** 

(.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006) 
 

           

Error Variance Parameter   
.883*** .884*** .883*** .883*** .883*** .883*** .883*** .883*** .883*** .884*** .884*** 

(.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006) (.006) 

            

Constant 
.166*** .163*** .164*** .162*** .165*** .165*** .166*** .165*** .166*** .156*** .156*** 

(.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) 

            

N 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 

AIC -3277 -3309 -3295 -3319 -3284 -3287 -3278 -3283 -3276 -3380 -3378 

BIC -3184 -3205 -3196 -3221 -3185 -3189 -3180 -3185 -3177 -3243 -3255 

Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at 

p<.001. *p<0.05, **p<0.01,*** p<0.001 (two-tailed) 
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Table E.3 Spatial Lag and Error Models with Commuting Network Predicting STI Rates with Relevant Demographic Variables, 2002-2014 

  
Model 

1 

Model 

2 

Model 

3 
Model 4 

Model 

5 

Model 

6 

Model 

7 

Model 

8 
Model 9 

Model 

10 

Model 

11 

Concentrated Disadvantage 
.033 -.099** .058 .056 -.003 .025 .056 .004 .034 -.015  

(.032) (.037) (.032) (.032) (.034) (.032) (.036) (.033) (.033) (.040)  

Residential Stability 
-.031 -.053 -.033 -.072* -.068 .011 -.046 .020 -.030 -.076 -.082 

(.037) (.040) (.036) (.036) (.038) (.040) (.038) (.038) (.037) (.047) (.046) 

Diversity 
-.087*  -.108* -.113** -.078 -.065 -.085* -.087* -.088*   

(.043)  (.043) (.042) (.043) (.044) (.043) (.043) (.043)   

Local Worker Density 
.038 .039 .058 .034 .048 .048 .039 .076* .039 .083* .062 

(.037) (.036) (.036) (.036) (.037) (.037) (.037) (.038) (.037) (.038) (.035) 

Percentage White  -.001        .008 .008 

 (.006)        (.007) (.007) 

Percentage Black  .017***        .016** .017*** 

 (.005)        (.006) (.005) 

Percentage Hispanic  .001        .007 .007 

 (.006)        (.007) (.007) 

Teen Birth Rate   .006***       .003*  

  (.001)       (.001)  
Age-Adjusted Total Fertility 

Rate 
   .0002***      .0003*** .0003*** 

   (.00004)      (.00004) (.00004) 

Average Household Size     .217**     .177* .162* 

    (.070)     (.082) (.078) 

Population Married      -.010**    -.011** -.010** 

     (.004)    (.004) (.004) 

Population Aged 15 to 25       -.005   -.023** -.023** 

      (.003)   (.008) (.008) 

Total Population Logged        

-

.314***  -.069  

       (.078)  (.114)  
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Population Density         

-2.99e-

08 9.96e-08 8.01e-08 

        

(1.28e-

07) 

(1.28e-

07) 

(1.24e-

07) 
 

           

Network STI Risk 
.964*** .965*** .964*** .964*** .964*** .964*** .964*** .964*** .964*** .964*** .964*** 

(.010) (.010) (.010) (.010) (.010) (.010) (.010) (.010) (.010) (.010) (.010) 
 

           

Error Variance Parameter   
.964*** .965*** .965*** .965*** .965*** .964*** .964*** .965*** .964*** .966*** .966*** 

(.010) (.009) (.010) (.010) (.010) (.010) (.010) (.009) (.010) (.009) (.009) 

            

Constant 
.165*** .161*** .162*** .161*** .164*** .164*** .165*** .163*** .165*** .155*** .156*** 

(.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) 

            

N 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 

AIC -1083 -1123 -1106 -1125 -1090 -1088 -1083 -1096 -1081 -1178 -1176 

BIC -989 -1020 -1008 -1027 -992 -990 -985 -998 -982 -1040 -1053 

Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at 

p<.001. *p<0.05, **p<0.01,*** p<0.001 (two-tailed) 
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Appendix F: Supplementary Analyses Examining STI Prevalence by Disease and Gender 

As STI rates vary by disease and gender, these variations might map onto communities 

differently. Tables E.1 through E.4 predict the four STI rates which make up our composite STI 

prevalence measure separately – gonorrhea rates for males aged 15 to 44, gonorrhea rates for 

females aged 15 to 44, chlamydia rates for males aged 15 to 44, and chlamydia rates for females 

aged 15 to 44. Our substantive conclusions from Table 1, in main text, remain consistent. 

Interestingly, our community sociodemographic measures differently predict the varying STI 

rates. We find that residential stability serves to increase the prevalence of gonorrhea for males 

and females, while it decreases chlamydia rates among females. 
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Table F.1 Spatial Lag and Error Models Predicting Gonorrhea Rates for Males Aged 15 to 44, 2002-

2014 

  Without Network Spatial Network  
Commuting 

Network        

Public Transit 

Network 

Prior Gonorrhea Rate 
.372*** .245*** .299*** .329*** 

(.0289) (.027) (.046) (.031) 

Concentrated 

Disadvantage 

-19.6 -37.7 64.7 -38.4 

(51) (38.3) (56) (51.8) 

Residential Stability 
455*** 232*** 193* 394*** 

(58.8) (47.2) (84.5) (65.9) 

Diversity 
35.6 -24.3 232* 3.86 

(68.2) (54.9) (103) (70.3) 

Local Worker Density 
-120 -82.9 -2.12 -146* 

(69) (62.7) (59.3) (71.5) 

     

Constant 
271*** 243*** 421*** 284*** 

(6.31) (6.47) (14.4) (6.62) 

     

Network STI Risk  .639*** 5.35*** .883*** 

 (.046) (.411) (.006) 
 

    

Error Variance Parameter    -.542*** 3.5*** .883*** 

 (.091) (.226) (.006) 

     

N 1001 1001 1001 1001 

AIC 13014 12925 10766 10483 

BIC 13102 13023 10864 10582 
Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at 

p<.001. *p<.05, **p<.01,*** p<.001
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Table F.2 Spatial Lag and Error Models Predicting Gonorrhea Rates for Females Aged 15 

to 44, 2002-2014 

 Without 

Network 

Spatial 

Network  

Commuting  

Network        

Public Transit 

Network 

Prior Gonorrhea Rate 
.237*** .154*** .092* .197*** 

(.031) (.025) (.044) (.033) 

Concentrated 

Disadvantage 

15.4 -9.1 128*** -11.8 

(39.9) (28) (38.5) (41.2) 

Residential Stability 
186*** 70.9* 12.7 118* 

(43.4) (30.8) (53.7) (49.9) 

Diversity 
-39.3 -22.8 266*** -83.6 

(52.8) (40.2) (78.3) (55.4) 

Local Worker Density 
-74.2 -65.2 -78.6* -60.3 

(53.2) (47) (39.7) (56) 

     

Constant 
210*** 184*** 356*** 224*** 

(4.89) (5.27) (12.7) (5.2) 

     

Network STI Risk  .73*** 4.55*** .883*** 

 (.044) (.28) (.006) 
 

    

Error Variance 

Parameter   
 -.683*** 4.94*** .883*** 

 (.091) (.31) (.006) 

     

N 1001 1001 1001 1001 

AIC 12540 12468 10291 10039 

BIC 12629 12566 10390 10137 
Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all 

models at p<.001. *p<0.05, **p<0.01,*** p<0.001 (two-tailed) 
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Table F.3 Spatial Lag and Error Models Predicting Chlamydia Rates for Males Aged 15 to 44, 2002-

2014 

  Without Network Spatial Network  
Commuting 

Network        

Public Transit 

Network 

Prior Chlamydia Rate 
.218*** .126*** .202*** .215*** 

(.032) (.024) (.0327) (.034) 

Concentrated 

Disadvantage 

-90.7 -48.2 -14.7 -54.3 

(58.7) (41.2) (61.5) (58.2) 

Residential Stability 
-37 14 35.8 -18 

(64.2) (43.4) (69.3) (71.1) 

Diversity 
-69.4 -46.1 -62.5 -77.9 

(79.1) (59.3) (82) (79.3) 

Local Worker Density 
88.6 108 194** 51.2 

(79.9) (67.7) (69.9) (80.5) 

     

Constant 
315*** 265*** 312*** 321*** 

(7.32) (7.38) (7.27) (7.46) 

     

Network STI Risk  .78*** .966*** .883*** 

 (.039) (.009) (.006) 
 

    

Error Variance Parameter    -.558*** .966*** .883*** 

 (.091) (.009) (.006) 

     

N 1001 1001 1001 1001 

AIC 13288 13136 12867 10705 

BIC 13377 13234 12965 10803 
Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at 

p<.001. *p<.05, **p<.01,*** p<.001
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Table F.4 Spatial Lag and Error Models Predicting Chlamydia Rates for Females Aged 15 to 44, 2002-

2014 

  Without Network Spatial Network  
Commuting 

Network        

Public Transit 

Network 

Prior Chlamydia Rate 
.384*** .316*** .375*** .394*** 

(.032) (.031) (.033) (.033) 

Concentrated 

Disadvantage 

73.8 21.8 16.2 74 

(79.8) (67.3) (86) (81.8) 

Residential Stability 
-423*** -243** -403*** -409*** 

(90.9) (80.5) (99.6) (102) 

Diversity 
-203 -94.7 -195 -262* 

(106) (96.8) (114) (110) 

Local Worker Density 
38.5 -12.4 3.3 90.9 

(107) (103) (96) (111) 

     

Constant 
421*** 398*** 431*** 443*** 

(9.8) (10.8) (10) (10.3) 

     

Network STI Risk  .522*** .965*** .883*** 

 (.074) (.010) (.006) 
 

    

Error Variance Parameter    -.393** .966*** .884*** 

 (.12) (.009) (.00) 

     

N 1001 1001 1001 1001 

AIC 13826 13791 13460 11301 

BIC 13915 13889 13558 11399 
Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at p<.001. 

*p<.05, **p<.01,*** p<.001  
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Appendix G: Supplementary Analyses Examining STI Prevalence by Varying Commuting 

Thresholds 

 

We define a commuting tie using a 0.5% cutoff for several reasons. Community areas in 

Chicago, on average, have a population of 35,000 residents. A 0.5% cutoff represents, on 

average, 175 residents (0.005 X 35,000). It is important for us to define a commuting tie existing 

between two communities based on a sufficiently large enough sample to avoid noise and have a 

substantively meaningful number of residents commuting to the work community. When 

selecting smaller thresholds, most of the communities become connected to one another, making 

it more difficult to disentangle meaningful connections from noisy data. When selecting higher 

thresholds, only a few hub work communities remain connected to the other home communities, 

leading to possible concerns about a small number of outliers driving the results. Still, we found 

it valuable to explore analyses which examine the results using varying cutoff thresholds which 

represent both weak and strong commuting ties.  

 

These supplementary analyses are presented in Table G.1.  We incorporate two commuting 

networks with a weak tie threshold cutoff, 0.1% and 0.25%, as well as two commuting networks 

with a strong tie threshold cutoff, 1% and 2.5%. We find with small cutoffs there is a stronger 

effect and with strong cutoffs there is no effect. This is likely because the small commuting tie 

thresholds lead communities to be connected to most of the other communities in the network, 

while the strong commuting tie thresholds leads communities to only be connected to a very 

select few hub communities such as O’Hare and the Loop. 

 

We explore this possibility using descriptive statistics by examining the number of isolates, the 

average indegree and outdegree, and the range for indegree and outdegree in each commuting 

network. Table G.2 presents these results. The average indegree and outdegree changes 

dramatically between the weakest and strongest tie thresholds. Further, while in the weakest 

network the minimum number of work communities a home community is connected to is 21, in 

the strongest network there are two isolates who are not connected to any work community.
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Table G.1 Spatial Lag and Error Models Predicting STI Prevalence by Varying Commuting Thresholds, 

2002-2014 

  0.1% Cutoff 0.25% Cutoff 1% Cutoff 2.5% Cutoff 

Prior STI Prevalence 
-.087 .306*** .392*** .391*** 

(.047) (.061) (.030) (.031) 

Concentrated 

Disadvantage 

.076* -.023 -.056* -.054 

(.034) (.041) (.028) (.028) 

Residential Stability 
-.064* -.561*** -.010 -.014 

(.029) (.060) (.030) (.030) 

Diversity 
-.035 .059 -.061 -.064 

(.050) (.060) (.037) (.03) 

Local Worker Density 
-.221*** -.208*** -.002 -.009 

(.045) (.046) (.037) (.041) 

     

Constant 
5.77*** 7.12*** .055 -.154 

(.282) (.47) (.081) (.362) 

     

Network STI Risk 
84.2*** 11.3*** .065 .078 

(15.5) (.919) (.082) (.434) 
 

    

Error Variance Parameter   
1.45*** .471*** .145*** .146*** 

(.243) (.026) (.003) (.003) 

     

N 1001 1001 1001 1001 

AIC -9066 -5909 -901 -900 

BIC -8968 -5811 -802 -802 
Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at p<.001. 

*p<.05, **p<.01,*** p<.001  
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Table G.2 Network Descriptive Statistics for Varying Commuting 

Thresholds 

  
.1% 

Cutoff 

.25% 

Cutoff 

.5% 

Cutoff 

1% 

Cutoff 

2.5% 

Cutoff 

Indegree      

Mean 33.2 16.3 8.2 4.1 1.5 

SD 23.8 20.7 16.8 14.8 8.9 

Min 0 0 0 0 0 

Max 76 76 76 76 74 

Outdegree      

Mean 33.2 16.3 8.2 4.1 1.5 

SD 4.7 4.1 2.7 1.3 .7 

Min 21 6 2 1 0 

Max 43 26 14 7 3 

Isolates 0 0 0 0 2 
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Appendix H: Supplementary Analyses Examining Absolute STI Cases 

Table H.1 evaluates models using the absolute number of STI cases rather than a standardized 

combined measure of STI rates. In these models, we control for the logged total population. The 

results are substantively the same as those presented in the main text which use a standardized 

measure. 
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Table H.1 Spatial Lag and Error Models Predicting Absolute STI Cases, 2002-2014 

  Without Network Spatial Network  
Commuting 

Network        

Public Transit 

Network 

Total Population Logged 
71.1* 30 59.1* 94.5** 

(31.5) (29.6) (27.5) (31.4) 

Prior STI Cases 
.52*** .453*** .485*** .529*** 

(.030) (.035) (.033) (.032) 

Concentrated 

Disadvantage 
-5.94 -4.09 -5.4 -9.41 

(9.79) (9.12) (11.2) (10) 

Residential Stability 
47.3*** 35.4** 49*** 32.9* 

(11.6) (11) (13.2) (13.2) 

Diversity 
-17.7 -22.7 -3.22 -22.7 

(13) (12.1) (14.6) (13.4) 

Local Worker Density 
-5.66 5.31 41.8** -14.9 

(13.4) (12.8) (12.8) (14) 

     

Constant 
51.6*** 48.8*** 55.5*** 54.2*** 

(1.2) (1.2) (1.3) (1.26) 

     

Network STI Risk 

    

 .414*** 

(.084) 

.955***  

(.012) 

.882***  

(.006) 
 

    

Error Variance Parameter    -.0776 .958*** .884*** 

 (.123) (.011) (.006) 

     

N 1001 1001 1001 1001 

AIC 9949 9876 9679 7421 

BIC 10042 9979 9782 7524 
Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at 

p<.001. *p<.05, **p<.01,*** p<.001 
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Appendix G: Supplementary Analyses Motivating the Fixed Effects Models 

Our analyses use fixed effects spatial and network autoregressive models. Though the 

geographic patterning of STI prevalence remains relatively stable over time, we find important 

variation between 2002 and 2014. We find 35% of communities experienced a change between 

the STI tercile rankings at least once during the duration of our study, with 67% of these 

experiencing change between rankings 1 and 2 (lowest and medium STI categories) and 

33% between 2 and 3 (medium and highest STI categories).  

 

Table I.1 presents the results of the Hausman test comparing the fixed effects and random effects 

spatial and network autoregressive models. This test assesses whether a fixed or random effects 

model is more appropriate for the data and analysis. The fixed effects examine the within-unit 

change of communities; in contrast, a random effects model accounts for both within and 

between differences of communities and presents the average effects across the 77 communities 

and time period. The Hausman test considers whether the more stringent model, the fixed effects 

model which focuses solely on within variation, is most appropriate. These results indicate that a 

fixed effects model is the more appropriate modeling strategy to examine STI rates over time for 

the network with no spatial weights matrix, the commuting network, and the public transit 

network. A random effects model would be more appropriate to model STI prevalence with our 

geographic contiguity matrix. However, for consistency we used a fixed effects model in our 

main results. Table I.2 presents the results of the random effects spatial and network 

autoregressive models and the results are substantively the same.  
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Table I.1 Hausman Test Comparing Fixed Effect and Random 

Effect Spatial and Network Autoregressive Models 

  Chi-Squared P-Value 

Without Network 407.15*** 0.000 

Geographic Contiguity 

Network 
18.3 0.370 

Commuting Network 122.09*** 0.000 

Public Transit Network 1618.31*** 0.000 

Note: There were issues with the random effects spatial autoregressive model with the public transit 
network. Sometimes the model would not converge, whiles others, the model failed to meet the 

asymptotic assumptions of the Hausman test. The results reported above are from when the model 

converged and met the assumptions. *p<.05, **p<.01,*** p<.001 
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Table I.2 Spatial Lag and Error Models Predicting STI Prevalence using Random Effects, 2002-2014 

  
Without 

Network 
Spatial Network  Commuting Network        

Public Transit 

Network 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Prior STI Prevalence 
.943*** .544*** .533*** .327*** .307*** -4.34*** -1.11*** 

(.0116) (.0712) (.0571) (.0396) (.0375) (.563) (.122) 

Concentrated Disadvantage 
.0284** .00905  -.035  1.15***  
(.0109) (.0304)  (.0239)  (.327)  

Residential Stability 
-.00147 -.0449* -.0463** -.169*** -.161*** -3.3*** -1.15*** 

(.00583) (.018) (.0177) (.0307) (.0299) (.444) (.0993) 

Diversity 
-.0218** -.0961*** -.0982*** -.0412 -.00347 -1.15** -.603*** 

(.00768) (.0234) (.0227) (.047) (.0398) (.37) (.122) 

Local Worker Density 
-.00302 -.0554* -.0579** -.0392 -.0373 1.01* .284 

(.00626) (.0224) (.021) (.0238) (.0237) (.474) (.17) 

        

Constant 
.00183 .0000856 -.00069 1.43*** 1.41*** .211 .0143 

(.0193) (.0267) (.0272) (.0994) (.0996) (1.25) (.421) 

        

Network STI Risk  .364*** .379*** 3.45*** 3.41*** 24.8*** 8.57 

 (.0822) (.0617) (.163) (.161) (2.51) (.) 
 

       

Error Variance Parameter    -.179 -.204* 7.51*** 7.65*** 68.6*** 44.9*** 

 (.133) (.103) (.0201) (.0727) (6.92) (2.27) 

        

N 1001 1001 1001 1001 1001 1001 1001 

AIC -683 -682 -684 -2561 -2561 -7114 -7256 

BIC -585 -574 -580 -2453 -2458 -7011 -7158 
Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at p<.001. *p<.05, **p<.01,*** p<.001 
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